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Abstract A2

Earth observation data presents a unique challenge: it is spatial like images, sequential like video
or text, and highly multi-modal. Training foundation models in this domain requires taking these
intricacies into account to get the best performance. We present a novel self-supervised learning
formulation, masking strategy, and loss all designed for the Earth observation domain. With these
tools we train OlmoEarth, a flexible, multi-modal, spatio-temporal foundation model. OlmoEarth
achieves state-of-the-art performance compared to 12 other foundation models across a variety of
research benchmarks and real-world tasks from external partners. When using model embeddings
OlmoEarth achieves the best performance on 15 out of 24 tasks, and with full fine-tuning it is the
best on 20 of 29 tasks. We deploy OlmoEarth as the backbone of the OlmoEarth Platform, an
end-to-end platform for data collection, labeling, training, and inference of Earth observation models.
The OlmoEarth Platform puts frontier foundation models and powerful data management tools
into the hands of non-profits and NGOs working to solve the world’s biggest problems. As part of
an open approach our model source code, training data, and pre-trained weights are available at
https://github.com/allenai/olmoearth_pretrain.
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1 Introduction

Everyone is training Earth observation foundation models these days (2; 10; 41; 12; 30; 34; 39; 33; 31; 3; 18;
11; 8). So we decided to train one too. Our work offers three major contributions:

1. Stable training in latent space with a novel target encoder, masking strategy, and loss.
2. Large scale evaluation across a range of tasks and foundation models.

3. Open model code, weights, training data, and an end-to-end platform to drive adoption.

1.1 Stable Training

Existing foundation model approaches either train in a supervised or unsupervised setting. Some foundation
models are trained to predict supervised labels like land cover maps from satellite observations (3). Other
foundation models use the vast quantity of unlabeled data to train in a self-supervised manner (40). We
present a formulation that unifies these approaches into a single task, show that it works well with only
observational data, and further improves when we add labels.

Our unified approach strikes a middle ground between two common approaches in self-supervised learning.
Masked autoencoders (MAE) predict pixel-level reconstructions of masked input while approaches like 1-JEPA
and Latent Masked Image Modeling (Latent MIM) predict reconstructions in feature space (1; 42). MAE tends
to be stable but limited in its feature representations while latent approaches are unstable but produce better
features (if they don’t crash out during training)(22).

1.1.1 Target Encoder

We present Latent Masked Image Modeling of Linear, Invariant Token Embeddings (Latent MIM Lite), a
simplification of Latent MIM that leads to stable training and better performance. We replace the target
encoder of Latent MIM with a linear projection from image patches to token space that is randomly initialized
and never updated during training. This simple modification stabilizes training but maintains the representative
power of modeling in latent space. It also unifies self-supervised and supervised learning as we project both
observational data and labeled maps through the frozen random projection layer into token space and calculate
loss the same for both.

1.1.2 Masking

Many foundation models build upon work in domains like image or text processing. Earth observation data
differs from these domains in having spatially aligned yet highly multi-modal, multi-temporal data. We find
that adjusting our masking strategy and loss to account for this unique domain gives us significantly better
performance.

In image or text modeling it is sufficient to randomly mask some portion of the input and have the model
reconstruct the input from context. With remote sensing data, because we have aligned data over various
modalities and timesteps, a uniform masking strategy over all tokens may be too easy of a task. Any token
in the input will have many similar tokens either in space, time, or at a different aligned modality. There’s
almost too much context unless you use a very high masking ratio (34). We adjust our masking strategy to
limit the amount of context present in any sample and make the problem challenging without resorting to
skewed masking ratios.

1.1.3 Loss

Similarly, with our loss formulation we find a small adjustment makes a large difference in downstream
performance. Like other SSL approaches in latent space we use a contrastive loss instead of a reconstruction
loss. However, contrasting a reconstructed token against all other tokens in a batch, or even in the same
sample, leads to many easy negatives given the highly redundant nature of Earth observation data. Instead
we contrast tokens only with other tokens in their respective bandset (a subdivision of modality explained in
2.1). This focuses the model training on a more challenging but more productive objective.



A. Frozen Performance using Embeddings (across 12 tasks)

OlmoEarth (ViT Base) 15.75
Terramind (ViT Large) 13.33
CROMA (ViT Base) 1283
Panopticon (ViT Base) 12,00
Galileo (VIT Base) 1200 B. Performance with Full Fine-tuning (across 18 tasks)
CROMA (VT Large) 12,00
Terramind (ViT Base) 11.42 OlmoEarth (ViT Base) 1117
OlmoEarth (ViT Tiny) 11.33 OlmoEarth (ViT Tiny) 8.83
DINOV3 Sat (ViT 78) 917 Prithvi v2 (ViT Large) 7.28
CopernicusFM (ViT Base) 8.92 Terramind (ViT Base) 6.83
Galileo (ViT Tiny) 833 Panopticon (ViT Base) 6.44
DINOV3 Sat (ViT Large) 6.08 Satlas (ViT Base) 6.33
Galileo (ViT Nano) 6.08 OlmoEarth (VIT Nano) [ 578
Prithvi v2 (ViT Large) 4.92 CopernicusFM (ViT Base) 567
Prithvi v2 (ViT Huge) 4.92 Anysat (ViT Base) 511
Anysat (ViT Base) 4.92 CROMA (ViT Base) 4556
Satlas (Swin Base) 4.00 Clay (VIT Large) 2.06
Clay (VIT Large) 358 DINOV3 Sat (ViT Large) 317
Worst 2 4 6 8 10 12 1 Best Worst 2 4 6 8 10 Best
Inverted Rank (N - Average rank) Inverted Rank (N - Average rank)

Figure1 OlmoEarth substantially outperforms previous remote sensing foundation models, both when using embeddings
(left), and with full fine-tuning (right). We show the inverted rank averaged across tasks involving Sentinel-2 images,
higher is better! We exclude tasks from the embedding evaluation that perform poorly without fine-tuning, such as
object detection tasks. Due to compute constraints, we don’t fine-tune large versions of models if a base model exists
(including for OlmoEarth).

1.2 Comprehensive Evaluation

There is no standard evaluation test suite for remote sensing models. While there are some established
standard practices, they are not always followed. To get a more complete picture of the state of foundation
modeling we run a comprehensive evaluation effort of OlmoEarth compared to 12 other foundation models on
18 research benchmarks. Further, to evaluate real-world performance we also evaluate models on 19 datasets
from 7 partner organizations that are using Earth observation modeling in their work.

Following standard practice we evaluate all models using simple transfer learning techniques (kNN and linear
probing) as well as full, end-to-end fine-tuning. We evaluate all models using a standard training recipe and
sweeping over a variety of parameters and settings, ensuring a fair evaluation.

OlmoEarth achieves the best performance in 15 of 24 tasks for the kNN/LP evaluation and 20 of 29 tasks for
full fine-tuning. We have huge tables with all the numbers later on but you can also look at the slightly less
confusing Figure 1 of “Inverted Average Rank”, a totally real metric.

1.3 OpenPlatform

Again, everyone is training Earth observation models these days. But adoption is lagging behind, especially in
the non-profit sector where organizations would love to use these models to solve big problems.

Some models are proprietary and reproducing them would take an experienced research team, a GPU cluster,
and a lot of money (8). All of the OlmoEarth pre-training code and data, fine-tuning scripts, and pre-trained
weight files are freely available.

Even with model code and weights, applying a foundation model to a novel task requires data gathering,
alignment, pre-processing, labeling, fine-tuning, and running inference. Do you know how to get data from a
satellite? I sure don’t. But someone on the team does and we built a whole end-to-end platform to get all
that data and do all those other things too. Including run training and inference so our partners don’t have
to spin up a GPU cluster.

The OlmoEarth Platform is an end-to-end solution for organizations who want to harness Earth observation
data for the public good. Our partner organizations are already using the platform for things like mangrove
conservation, ecosystem mapping, and agricultural planning for food security. This solves the last-mile problem
of putting frontier research into the hands of people who can use it to do the most good.



Figure 2 Global distribution of data for OlmoEarth pretraining. We randomly sample 285,288 locations based on
OpenStreetMap categories. What’s your favorite map projection? I like the Peirce quincuncial projection centered on
Antarctica. They said it didn’t make any sense for this figure though. They said "We hate Antarctica, that’s why we
don’t sample any points there". I said, "Hey, there is one point there!" They didn’t have a response to that so they
tried to silenced me by deactivating my acc

2 OlmoEarth

OlmoEarth is a Vision Transformer (ViT) based encoder-decoder style architecture. It processes a multi-modal
image timeseries of aligned satellite images and derived maps. A FlexiViT-style projection layer converts the
input data from pixels to tokens with a variable patch size. Positional, temporal, and modality encodings add
additional context to the tokens. During training, some portion of the input tokens are masked. The encoder
transformer layers attend across space, time, and between modalities to produce embeddings for the input
tokens. The decoder predicts representations for the masked input tokens.

2.1 Data

OlmoEarth is designed to flexibly handle input Earth observation data across a range of spatial and temporal
resolutions. During our pretraining experiments we train on three satellite modalities and six derived maps:

Observations ‘ Maps

Sentinel-1 OpenStreetMap (26)  WorldCereal (38)
Sentinel-2 WorldCover (44) Cropland Data Layer (36)
Landsat SRTM (24) Canopy Height Map (32)

Our pretraining dataset contains 285,288 samples from around the world. Each sample covers a 2.56km X2.56km
spatial region and a one-year time range. For multi-temporal modalities, we use up to 12 timesteps sampled
monthly over the course of the year, although many samples contain only a subset of the timesteps and
modalities.

For the above modalities we resample the data to be uniformly 10 meters per pixel. We have experimented
with adding NAIP data at 2.5 meter per pixel and ERAb data at 160 meters per pixel but found no significant
improvement on our evaluations (37; 17).

We further subdivide Landsat and Sentinel-2 into bandsets based on the original resolution of their bands,
grouping bands captured at the same resolution together. Landsat consists of 2 bandsets while Sentinel-2
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Figure 3 We train OlmoEarth with a combination of satellite observations and high-quality maps. After tokenizing
these inputs, we: (1) apply a modality aware masking strategy to define which tokens get encoded and which become
targets, (2) pass the target tokens through fixed random projections to construct targets, (3) pass the encoded tokens
through our learned encoders, and then (4) through a decoder which predicts the target tokens and (5) apply a
modality aware patch discrimination loss between the predicted and target tokens. Steps 1-5 are applied twice per
minibatch; we then (6) apply an instance contrastive loss over the aggregated tokens per instance.

consists of 3 bandsets. For the precise split see the OlmoEarth source code.

The locations of samples are chosen based on OpenStreetMap features. We select 120 categories of map features
in OpenStreetMap, ranging from roads to geothermal power plants, and enumerate all 2.56km X 2.56km tiles
containing each category. We then randomly sample up to 10,000 tiles per category to derive the 285,288
samples (many categories appear in fewer than 10,000 tiles). The one-year time range of each sample is
sampled uniformly between January 2016 and December 2024.

2.2 Architecture

Similar to many Earth observation models, OlmoEarth is a transformer-based encoder-decoder style architec-
ture. Inspired by Galileo, we use a flexible patch-embedding layer (34; 4). However, instead of doing that
confusing pseudo-inverse stuff from FlexiViT we keep the actual projection weights the same size and resize
the input image to mimic changing the patch size. It’s probably basically equivalent.

Once the input is in token space, OlmoEarth adds in a 2D sincos positional embedding, a sinusoidal temporal
embedding, and a learnable modality embedding to each token. During training, some tokens are masked out
of the input, otherwise all tokens are passed to the encoder transformer which performs full self-attention
across space, time, and between modalities.

Architecture Depth Dim Heads Parameters

ViT Nano 4 128 8 1.4M
ViT Tiny 12 192 3 6.2M
ViT Base 12 768 12 90M
ViT Large 24 1024 16 300M

Table 1 ViT encoder model architectures and number of parameters for the four OlmoEarth model sizes.

We train four different encoder model sizes based on standard (or somewhat standard) Vision Transformer
sizes, see Table 1. For each model size the decoder has the same feature dimension and number of heads
but only a depth of 4. We want the majority of the feature representation to happen in the encoder and we



theorize a smaller decoder may encourage this.

During training the decoder represents the masked portions of the input with a learned < MASK > token
added to the appropriate positional, temporal, and modality embeddings. The decoder cross-attends these
tokens with the visible tokens from the encoder. It produces predictions for the masked tokens in latent space.

2.3 Masking

OlmoEarth uses a modality-aware masking strategy. For every example the masking strategy selects some
bandsets to be encoded and also some to be decoded, non-exclusively. Thus every bandset falls into one of
four categories:

e Not selected: Bandset ignored for this example

e Encodeonly: Bandset randomly masked and input to encoder

e Decodeonly: Bandset used as target for decoder

e Encodeanddecode: Bandset randomly masked, input to encoder, masked tokens used as targets for decoder

This masking strategy re-frames the problem slightly from reconstructing data that has been partially masked
to reconstructing missing bandsets from partial views of other bandsets. When all bandsets are encoded
and decoded we find the task is too easy. Masked tokens in a bandset will likely have other tokens in the
same bandset that are highly correlated with them that are visible in the input, tokens nearby spatially or
temporally. Training in this easier paradigm requires using very high masking ratios (i.e. masking out 90% of
the input) to get decent results. Masking some bandsets entirely makes the problem harder and we can use
more balanced masking ratios.

OlmoEarth trains on both observations and maps but at inference time we only use observations. Maps
can change over time-indeed downstream tasks are often detecting this kind of change—so we only rely on
observations for inference. Thus during training our masking strategy never encodes map data, it only ever
decodes it. While observations can fall into any of the above four categories, maps will only be “decode only”
or “not selected”.

2.4 Latent MIM Lite

During training OlmoEarth predicts reconstructions of the masked input in latent space. We use a randomly
initialized, frozen projection layer for each modality to project masked patches in the input into token space.
Thus OlmoEarth performs Latent Masked Image Modeling, but based on Linear, Invariant Token Embeddings.

Randomly projecting raw input data extracts valuable features both from a theoretical and practical standpoint
(65 29; 5). Thus our predictions are operating in a true latent space of our input data. However, because we
use a fixed target encoder we avoid the representation collapse common in Latent MIM-style training. While
it’s possible this approach is too simplistic in more diverse domains like natural image processing, empirical
results show a clear benefit in our domain of Earth observation data.

Latent MIM Lite allows us to unify supervised and self-supervised training under the same architecture. We
project each modality, whether observations or maps, through a frozen random projection into token space.
Loss is calculated the same for both types of modalities. We don’t need to add on specific predictor heads for
supervised data or adjust our training strategy or loss. In our ablations we see this approach gives strong
results in a purely self-supervised setting and also benefits from additional supervised data.

Other models like Galileo and Terramind train on both supervised and unsupervised data however they treat
supervised maps as a valid input to the model (34; 18). This means their encoders must learn to model these
map modalities as input and during training may use map modalities to predict observations or other map
modalities. While this also unifies supervised and semi-supervised training, we theorize that our approach
simplifies learning for the encoder while maintaining the benefits of training with supervised data. In our
evaluations we see improved performance over these models on most tasks.



2.4.1 Modality Patch Discrimination

Masked image modeling in pixel space typically uses a reconstruction loss like Smooth L1. Latent MIM
proposes using a contrastive loss (Patch Discrimination) instead of reconstruction loss to incentivize diversity
in the latent space predictions. Patch discrimination loss frames token reconstruction as a classification task
where we want the predicted token for a patch to be similar to the target token but dissimilar from other
ground truth tokens for other patches. Patch discrimination uses cosine similarity to measure token similarity
and cross entropy loss to contrast between positive and negative matches.

Typical patch discrimination contrasts a predicted token with all target tokens in the input. For image
modeling, the target tokens from an image are encodings of different parts of the image so they are from the
same distribution, making the contrastive task challenging. In OlmoEarth, different target tokens can come
from different modalities or different time steps as well as different spatial locations.

Tokens from different modalities have very different distributions so distinguishing between them is easy.
Yet there are so many tokens from other modalities that a significant amount of the loss comes from these
“easy” negatives. We find eliminating easy negatives and only contrasting tokens with targets from the same
modality gives a substantial performance increase.

2.4.2 Instance Contrastive Loss

Patch discrimination loss operates on the local representations generated by the encoder and decoder but
many tasks (like classification) require a global understanding of the input region. Some foundation models
use a single < CLASS > token to represent this global information. Instead we opt to pool information globally
over all modalities, timesteps, and locations for an input. To generate a global representation for an input we
run the OlmoEarth encoder and average pool the output tokens.

Tokens encoded from the same modality share semantics but tokens from different modalities may look very
different from each other. We want to be able to average tokens from all modalities together and get a sensible
global representation of an input. Thus we use a contrastive loss on the pooled representation from the
encoder to encourage tokens to exist in a common representation space and behave well when pooled.

We want both positive and negative samples for our contrastive loss so we take an approach similar to SimCLR
(9) and encode two versions of the same input, contrasting these two versions as positive examples with the
rest of the batch as negative examples. However, instead of using different data augmentation to generate the
two samples we simply apply two different variations of random masking to the input.

Thus during training for every batch we run random masking twice, then encode both batches with our
encoder, pool the resulting tokens, and apply contrastive loss to the pooled representations. We also run the
decoder, decoding masked portions for both images and calculate the modality patch discrimination loss as
described above. We use a scalar multiple to control the contribution of instance contrastive loss to modality
patch discrimination loss, for experiments in this paper we scale the instance contrastive loss by 0.1.

3 Experiments

We extensively evaluate OlmoEarth on both standard research benchmarks and real-world downstream tasks
from partner organizations. Following standard practice in remote sensing foundation models we evaluate
both kNN/linear probe performance with a frozen encoder and full fine-tuning performance (34; 12; 27).

To get as comprehensive an evaluation as possible we import other top performing foundation models into
our evaluation framework and evaluate them as well so they are directly comparable (2; 10; 41; 12; 30; 34;
39; 33; 31; 3; 18; 11). We use the same training recipes for each foundation model but sweep a variety of
hyperparameters to find the best performance for each model on each task. We leave evaluations blank for
models that don’t support particular modalities. We also don’t fine tune some large models on partner tasks
due to compute and time limitations.

This evaluation effort represents the most accurate, fair, comprehensive evaluation of Earth observation models
in the literature. Even without our modeling contributions this evaluation effort offers valuable insights into
the strengths and weaknesses of the most popular and highest performing models.
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Table 2 kNN/Linear probe results across a variety of research benchmarks and real-world tasks from our partners.
We run kNN on single time-step classification tasks and linear probing on all other tasks. We sweep across data
normalization strategies, feature pooling, and learning rate (for linear probing) and report the test set result for the
best validation set performance. Not all models can run on all tasks due to incompatible input modalities. OlmoEarth

has consistently strong performance across tasks, and provides the best performance on 15 out of 24 tasks.
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CROMA ViT Large |71.8 589 97.8 - 97.5 478 58.1 68.8 79.4 - - - - - - - - - - - - - - - - - - -
DINOv3 Sat ViT Large |69.9 63.3 98.9 59.2 96.7 80.6 64.7 - 34.5 - 43 80.4 90.2 - 65.8 - 82.9 - 35.8 - - - 58  30.3 54.8 70.7 -
Galileo ViT Base 69.2 64.7 98.3 - 97.8 788 71.9 79.7 81 81.5 629 951 20.1 187 973 975 855 88 81.9 819 - 78.7 754 164 T3 83.1 85.1
Panopticon ViT Base 69.3 654 99 56 98.2 T79.7 72.8 79.1 | 75.5 785 543 964 245 23.7 971 974 864 88.6 652 69.5 749 76.7 76.8 17.7 69.4 81.8 79.3
Prithvi v2 ViT Huge |70.6 64.7 98.2 - 96.8 81.1 69.3 - 80 - 60.6 924 20.5 - 97.2 - 84.8 - 77.1 - 71.1 - 74.8 174 682 84.1 -
Satlas Swin Base |72.7 65.1 98.7 56 97 7 60.5 78.5 78 - 56.1 63.3 25 246  96.6 - 87.5 - 47.6 - - - 776 16.2 -
Terramind ViT Base 72.6 66.1 98.5 97.6  80.9 73.2 79.5 71 76 57 96.2 24.7 - 96.5 96.8 84 87.8 53.7 527 - 80 74.7 18.1 79
Terramind ViT Large 74 654 98.1 - 97.8 813 71.5 79.5 - - - - - - - - - - - - - - - - -
OlmoEarth ViT Nano |66.8 61.5 98 50.3 95.3 39.5 60.6 78.8 | 825 825 61.1 96 204 197 974 974 868 878 756 748 702 755 75 171 79.6
OlmoEarth ViT Tiny 69.6 63.5 98.7 532 97.1 725 71.5 79.7 85 85.5 60.6 97.7 198 192 97.6 97.7 856 893 782 764 744 769 T7.6 158 85.2
OlmoEarth ViT Base 72 68.6 986 51.2 987 T9.8 77.8 79.8 87 86 624 97.1 185 179 976 979 863 89.6 81.8 822 754 79.2 78.8 15.4 86.7
OlmoEarth ViT Large |72.4 68.1 98.6 52.7 98.5 80.6 81.8 79.8 - - - - - - - - - - - - - - - - -
Table 3 Fine-tuning results from research benchmarks (left) and partner tasks (right). We train all models with the

same recipe and report test set results based on the model checkpoint with the best validation set performance. Some
models are only compatible with a subset of tasks. Due to resource constraints, we do not fine tune large models on
partner tasks when base version are available. OlmoEarth achieves the best performance on 20 out of 29 tasks.



3.1 Pretraining

We pretrain OlmoEarth on our pretraining dataset described in 2.1 using Latent MIM Lite. We use AdamW
optimization with a base learning rate of 1 X 10_4, weight decay of 0.02, batch size of 512, linear learning
rate warm-up of 8000 steps, cosine annealing of learning rate by 0.1 over a total of 667,200 steps. Due to
memory constraints we use a micro-batch size of 32 so the pooled contrastive loss is only applied over these
32 examples, not the full batch of 512.

During training OlmoEarth uses a random effective patch size in the range {1...8} and takes a random square
crop from the input with side length in tokens in the range {1...12}. Thus, along the spatial dimension the
smallest input is a 1 X 1 pixel region in the input with a patch size of 1, and the largest input is 96 X 96 pixel
region in the input with a patch size of 8. Along the temporal dimension, our model processes between 3 and
12 timestep. During training our model processes around 100 billion tokens.

3.2 Research Benchmarks

We evaluate across a variety of common research benchmarks for classification and segmentation across single
and multiple sensor modalities.

Our evaluations include all seven Sentinel-2 and Landsat benchmarks from GEO-Bench (21): m-bigearthnet
(multi-label land cover classification), m-so2sat (local climate zone classification), m-brick-kiln (brick kiln
classification), m-forestnet (forest loss driver classification), m-eurosat (land cover classification), m-cashewplant
(cashew plantation segmentation), and m-SA-crop-type (crop type segmentation).

We also evaluate on the classification benchmarks BreizhCrops (28) and CropHarvest (35) (crop type classifi-
cation tasks from pixel time series) and the segmentation benchmarks PASTIS (13) (crop type segmentation),
MADOS (20) (marine debris and oil spill identification), and SenlFloodsl1 (7) (flood segmentation).

Also we have opinions about some of these benchmarks.

MADOS: Pre-normalized images make it difficult to apply foundation models with their intended normalization
statistics. Additionally, the dataset includes a lot of rare classes that greatly affect mIoU in the test set,
making metrics highly variable across runs of same model with different seeds.

Sen1Floods11: Every model gets between 78-80%, not well correlated with other benchmarks. But one of the
few Sentinel-1 benchmarks.

m-Cashew Plant: Multiple models were sensitive to input patch size on this dataset so for models that had a
variable patch size we swept input patch size and report the best result. Ultimately this is likely an effect of
the labels being large polygons, instead of per-pixel labels.

m-Brick Kiln: Too easy, also some of the images are all black? (see Figure 2 of (21))

PASTIS: The perfect benchmark and the most important one, and hey look at that we’re really good at it.

3.3 Partner Tasks

While developing OlmoEarth we partnered with several organizations who are already using or want to use
remote sensing data for environmental, climate, or research tasks. These organizations provided labeled data
across a variety of domains for our evaluations offering critical insights into how these models perform on
actual tasks that people care about.

As part of our open release we also release the data and labels for these downstream tasks where available,
with the exception of ecosystem type classification and crop type classification in Nandi county, which will be
released at a later date at the request of our partners.

Several tasks involve individual point labels, where each example consists of a longitude-latitude location
labeled with a class or regression value. For these tasks, the input is a one-year time series with monthly
images, either Sentinel-2 only or Sentinel-2 + Sentinel-1:

AWF - African Wildlife Foundation (AWF) Land cover classification in southern Kenya. The dataset contains
1,459 examples with 9 classes, which range from lava forest and agriculture to urban development. The AWF



team used Planet imagery as the main reference to annotate these examples.

Live Fuel Moisture Content - NASA JPL Regression dataset of 41,214 examples from Globe-LFMC-2.0 (43)
labeled with the LEMC value. We partner with NASA JPL to deploy a model trained on this data. LFMC
predictions are used to understand wildfire risk.

Mangrove - Global Mangrove Watch Classification dataset of 100,000 coastal areas into 3 classes: mangrove
forest, water, or other. Mangrove maps across different years are used to understand mangrove growth and
loss.

Nandi - CGIAR Crop-type classification in Nandi County, Kenya. The dataset contains 6,924 examples with 6
categories (coffee, maize, sugarcane, etc.). The ground-truth labels were collected through field surveys.

Ecosystem type mapping is similar, but only uses uses six timesteps of input images:

GEA North Africa - Global Ecosystem Atlas Ecosystem type classification of 2,361 examples in a region of North
Africa, and labels correspond to the 110 categories in level 3 of the IUCN Global Ecosystem Typology (15).

The other tasks are more unique:

Forest Loss Driver - Amazon Conservation Classification dataset for the cause of forest loss in the Amazon
rainforest into 10 classes (mining, logging, agriculture, etc.). The input consists of 4 Sentinel-2 images captured
before the forest loss and 4 images captured after the forest loss. Driver predictions are used to prioritize
enforcement and litigation efforts to deter further human-caused forest loss.

Marine Infrastructure - Skylight Global marine infrastructure detection dataset containing 7,197 examples
labeled as offshore platform or wind turbine. The input consists of a time series of 4 Sentinel-2 or Sentinel-2 +
Sentinel-1 images.

Vessel Detection, Type, Length - Skylight Three object detection tasks to detect vessels in Landsat (8,000
examples), Sentinel-1 (1,776 examples), and Sentinel-2 (45,545 examples) images, one classification task to
predict the vessel type in Sentinel-2 images centered at detected vessels (584,432 examples), and one regression
task to estimate the vessel length in Sentinel-2 images (584,432 examples). For all of these tasks, the input is
a single image.

Solar Farm Detection: Binary segmentation dataset containing 3,561 examples densely labeled with solar farm
polygons. The input consists of 4 timesteps, either Sentinel-2 or Sentinel-2 + Sentinel-1. Solar farm maps are
used to understand the global rate of renewable energy deployment over time.

3.4 kNN and Linear Probing

For embedding-based evaluations we extract embeddings from the train, validation, and test set and train either
a kNN model for single time step classification or a linear probe model for segmentation and multi-temporal
classification. For OlmoEarth we use a patch size of 4 except, as noted above, we sweep patch size for
applicable models on m-Cashew Plant. For external models we use recommended settings for patch size, input
data resizing, etc. For models that don’t natively support time series data we input each time step separately
and either mean or max pool the resulting embeddings across time (we sweep this choice). For both kNN and
linear-probe evaluations we sweep normalization statistics (evaluation-set vs. recommended pre-training).

We run kNN with & = 20 using cosine similarity, and follow standard evaluation practices (34; 16). For models
that output a < CLASS > embedding token we use that as the embedding for the whole image, otherwise we
average across resulting tokens.

We run linear probing on the output embeddings, training for 50 epochs. We sweep across a variety of learning
rates for each model {1 x107*,5x 107, 1x 107,510 °,1x 107%,5x 10721 x 10"*,5 X 107"} and report
the test results for the model with highest validation set performance.

3.5 Fine-Tuning

For fine-tuning evaluations, for each model, we take the encoder and add a decoder that makes classification,
regression, semantic segmentation, or object detection predictions. Our fine-tuning recipe freezes encoder
parameters for 20% of the epochs, only training the added decoder layers, and then unfreezes and fine-tunes
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the full model for the remaining epochs. We use AdamW optimization with a plateau scheduler that reduces
the learning rate by a factor of 0.2 after 2 epochs without improvement on the validation set and a 10 epoch
cooldown after reduction.

For fine-tuning on research benchmarks, the decoder is a single-layer linear probe; for classification tasks, it
makes a prediction using embeddings pooled over the image, and for segmentation tasks, it makes a prediction
using embeddings pooled temporally (when applicable) at each spatial patch. We sweep learning rates for
each model over {1 x107*,5x107*,1x107°}.

For fine-tuning on partner tasks, the decoder is (1) for classification and regression, a 3-layer MLP; (2) for
segmentation, a sequence of transpose convolution layers or, for models that output multi-scale feature maps,
a U-Net decoder; and (3) for object detection, a Faster R-CNN head, preceded by a feature pyramid network
for models that output multi-scale feature maps. We use a learning rate of 10~* for all tasks, except Nandi,
for which some models exhibit unstable learning and we sweep over {10_47 10_5}.

3.6 Results

For kNN/LP evaluations, OlmoEarth is the best performing on 11 of 18 research benchmarks and 4 of 6
partner tasks. OlmoEarth gets consistently high performance except in a couple instances. Other notable
models are Panopticon for strong performance across the board, including best in some GEO-bench tasks.
DINOv3 shows good results for tasks that mainly require visual information but lags behind specialized
models on tasks like BreizhCrops and PASTIS where temporal understanding is critical. Galileo shows strong
performance on many benchmarks, especially MADOS and agriculture-related tasks.

For fine-tuning evaluations, OlmoEarth is the best performing on 5 of 10 research tasks and 15 of 19 partner
tasks. The fine-tuning benchmarks especially highlight the challenge of standardization they vary drastically in
size and getting the best results would require a lot of tweaking of the training recipes for each model. However,
the goal of this evaluation is not to get the best possible results for every model, merely to standardize as
much of the setup as possible to see how models perform in a fair evaluation.

Again DINOv3 performs very well on visual tasks but lags behind on time-series tasks. Galileo and Satlas
also show strong performance across a variety of research benchmarks and partner tasks. Terramind achieves
the best performance on a few research benchmarks and is consistently strong across most tasks.

3.7 Ablations o

& &
We based OlmoEarth off of Latent MIM self-supervised training and 3* 0$¢;§00(§»
iterated on various modifications, keeping the most promising ones. ,&@\i@@&\q (\000 q?'z}“ S o
Table 4 shows our development process, starting from standard Latent & P L2 L L L v"’"\

R IR U SR R SR

MIM, random masking, patch discrimination loss only, and no maps ¥ ERE K22 51 70
data. Models in the table are trained according to training recipe in R RRE 0o 512 30
Subsection 3.1 but only for 140,000 steps. Results are shown for kNN 88 K 36 002 466
and LP on the validation set of three benchmarks. During development VY8 B 53 015 481
we only ran a subset of our evaluations in our "in-loop evals" but we YV ® 68 23 190

saw that improvements on a representative subset carried over to the YV Y Y V624 929 507

full evaluation set.

) Table 4 Development path of the
We see the Latent MIM model with a full depth target encoder up-  gmoFarth base model showing ef-

dated via exponential moving average of the online encoder gets poor fect of adding our various contribu-
performance due to representation collapse. Switching to Latent MIM tions starting from a Latent MIM
Lite where the target encoder is a frozen linear projection of the input approach.

substantially boosts performance. Further modifications show increased

performance for all tasks.

Our second set of ablations evaluates the contributions of components of our final model and training recipe
by removing them individually, with the exception of the top row which is a MAE baseline. These models are
trained for 300,000 steps. In the data ablation section we see the Sentinel-2 only model perform relatively
poorly, however the "No Maps" run (only observational data) maintains relatively high performance. While
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‘\0& & ~A>\° & 3 O be\\ Q{o‘&
P (gf' e&é” X o@‘ 5 Q}o"’ ) &\0‘ & & P &S 00? 00?
& &« AP S A R
S2 s2 S2 L8 S22 82 S1 82 S2 Sl
Acc. Acc. Ace. Acc. Ace. F1 F1 F1 F1 F1

MAE 60.6 48.1 96.2 42.0 89.3 71.5 311 46.6 68.7 78.3|63.2 5.1
Only S2 Data 53.7 459 91.3 - 89.2 7.7 - 424 695 - 464 -
No Maps 59.5 58.6 952 46.0 92.6 714 29.1 48.0 70.2 779|649 4.7
No Agricultural Maps 60.9 66.5 94.3 46.0 93.9 714 29.0 485 71.4 78.8|66.1 3.6
Random Masking 60.7 67.4 94.7 43.5 91.8 70.3 24.7 51.1 71.9 T77.8|654 4.7
No Instance Contrastive Loss | 60.5 65.6 93.6 44.9 93.6 70.2 28.5 51.4 721 784659 4.7
Patch Disc Loss 62.0 62.1 96.3 448 94.0 70.3 29.6 50.0 74.1 79.3|66.2 3.0
Final Recipe 623 659 942 458 94.6 714 294 522 71.7 78.8|66.6 2.9

Table 5 Ablation experiment selectively removing components of OlmoEarth base model.

our model can benefit from labeled data we still see good performance with pure self-supervised training.

Building remote sensing foundation models necessitates some tradeoffs. While our final model is not the best
in every metric it retains high performance across the board and has the best average score and lowest average
per-task rank.

3.8 Environmental Impact

Following recent work on environmental impact analysis of language modeling we estimate total energy use,
carbon emissions, and water consumption from training OlmoEarth models (14; 23; 25) in Table 6. Similar to
other environmental impact estimates this should be viewed as a lower bound as it doesn’t account for things
like hardware manufacturing, transportation, etc.

Total GPU  Carbon Emissions Water
Model Stage Hardware GPU Hours Energy (kWh) (tCO2eq) Consumption (kL)
OlmoEarth Nano | Pretraining H100 1,149 195 0.08 0.30
OlmoEarth Small | Pretraining H100 1,149 205 0.08 0.32
OlmoEarth Base | Pretraining ~ H100 2,989 803 0.32 1.24
OlmoEarth Large | Pretraining B200 5,240 1,933 0.77 2.99
OlmoEarth Nano | Fine-tuning - 647 186 0.07 0.29
OlmoEarth Small | Fine-tuning - 723 261 0.10 0.40
OlmoEarth Base | Fine-tuning - 1,224 685 0.27 1.06
OlmoEarth Large* | Fine-tuning - 58 39 0.02 0.06
Total Overall - 13,178 4,307 1.72 6.67

Table 6 Approximate environmental impact of pretraining and fine-tuning OlmoEarth. *OlmoEarth Large has only
been fine-tuned on research benchmarks. Metrics for fine-tuning OlmoEarth Nano, Small, and Base include fine-tuning
on both research benchmarks and partner tasks.

We train all of our models in a single data center, on a mixture of NVIDIA H100 and B200 GPUs. We
calculate the total GPU power required for a training run by tracking actual GPU power utilization every
~2bms to calculate a weighted average of power consumption throughout training. We then multiply this
quantity by the power usage efficiency (PUE) factor for our data center, provided by our data center provider,
and then we multiply this final GPU power usage amount by either the carbon intensity of the grid or the
water usage efficiency factor of the data center to calculate total carbon emissions and water consumption,
respectively.
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4 Discussion

We want OlmoEarth to have a positive impact on the world. Toward that end we release it as part of
the OlmoEarth Platform, an end-to-end, open solution for Earth observation tasks. OlmoEarth Platform
enables partner organizations to use the latest, best foundation models in their work on the environment,
conservation, food security, and more. Organizations like Global Mangrove Watch, Global Ecosystem Atlas,
and the International Food Policy Research Institute are using OlmoEarth Platform for data curation and
labeling, model fine-tuning, and inference.

4.1 Case Study: Mangrove Conservation

Global Mangrove Watch maps and tracks the extent and health of coastal mangrove forests. Mangrove
forests sequester carbon, protect the coastline from erosion, and provide a habitat for little fishies. While
Global Mangrove Watch has a lot of expertise with mangroves they don’t have the deep learning expertise or
infrastructure to train a model like OlmoEarth; they generate maps with a random forest model with a 95.3%
F1 score on a yearly cadence, only covering about half of the coastal regions mangroves exist.

Using OlmoEarth Platform we fine-tune an OlmoEarth model using their data up to an F1 score of 98.1%.
Through the OlmoEarth Platform we can run inference on a monthly cadence to generate new maps, or run
inference on a rolling basis to look for change detection in real-time. A more accurate model means less
work for Global Mangrove Watch to manually quality assure the results and an integrated platform means
delivering relevant, timely information into the hands of policy makers and conservationists.

4.2 Case Study: Global Ecosystem Atlas

#+OlmoEarth | Viewer

T.3.4_YOUNG_ROCKY_PAVEMENTS LAV, |
T_4_1_TROPHIC_SAVANNAS e
B T 4.2 PYRIC_TUSSOCK_SAVANNAS
B 745 TEMPERATE_SUBHUMID_GRASSL
T_5_1_SEMMDESERT_STEPPE

2] T.5.2 SUCCULENT_OR_THORNY_DESEF
DESERTS

@ 755 HYPER-ARID_DESERTS

B 7.6.5 TROPICAL_ALPINE_GRASSLANDS
B T.7_1_ANNUAL_CROPLANDS

B 772 SOWN_PASTURES_AND_FIELDS

@ 7_7_3_PLANTATIONS

Figure 4 Results of a fine-tuned ecosystem classification model in the OlmoEarth Platform.

Global Ecosystem Atlas is building a comprehensive map of the world’s ecosystems (19). To model the
complexity of the Earth they first have to label training data into a hierarchical taxonomy with more than
100 fine-grained classes (there are 5 different kinds of grasslands, e.g.). This labeling effort requires highly
knowledgeable, trained experts, multiple rounds of review, and careful curation of the final dataset.

For the last 3 months Global Ecosystem Atlas has been using OlmoEarth Platform to label more than 15,000
data points. OlmoEarth Platform allows them to partition areas of interest, generate points to label, assign
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those points to labelers, review the results, and export the data or fine-tune a model directly in the platform.
With a subset of the data from North Africa we fine-tune a OlmoEarth model that achieves state-of-the-art
accuracy and run inference to generate new ecosystem maps. Humans can review the inference results to feed
more, better labels back into the training pipeline.

4.3 Downstream Risks

The power and versatility of OlmoEarth also brings risks. While we want organizations to use it for
environmental and humanitarian purposes, we want to limit possible uses in ways that could harm humans or
the planet. We adopt a license that allows open use of OlmoEarth except for military, police, and extractive
industry. If you work in one of these fields and would like to use this technology maybe it’s time for a career
change!

4.4 The Future

We plan to add climate and weather data and forecasting to the OlmoEarth model to help with tasks like
wildfire prediction and crop yield forecasting. Expanding to this kind of data will require handling a wider
variety of input resolutions both spatially and temporally.

We also plan to add non-geospatial data to the model. Often data labeling for tasks like crop type mapping
requires actually going to a location in person and looking at stuff. We'd like the model to be able to do that
too. Having the ability to process geolocated natural images would expand OlmoEarth’s ability to handle
these fine-grained recognition tasks.

Ultimately we want to support and grow the community of partner organizations who bring incredible
knowledge, expertise, and passion to this work. We plan to learn from our partners about what tools and
capabilities they need and then improve OlmoEarth Platform to better help them. We hope OlmoEarth
Platform can become a hub for data, models, training, and inference across a wide range of organizations
working to solve the world’s biggest problems.
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Model Training Acc. Acc. Acc. L1 mIOU
AEF kNN 55.6 81 60.6 - -
AEF Frozen + Decoder | 33.2 67.3 51.1 23.1 69.5
AEF Full Fine-tuning Not Possible
OlmoEarth kNN 66.2 82 593 - -
OlmoEarth Frozen + Decoder | 62.1 83.5 59.3 19.9 84.8
OlmoEarth Full Fine-tuning |82.2 86.0 62.4 17.9 86.7

Table 7 Comparing AlphaEarth embeddings with OlmoEarth ViT Base model using three different training strategies:
kNN, frozen backbone + decoder, and decoder with full fine-tuning. For these evaluations, we use the “partner task”
decoders described in Section 3.5.

A Comparison to AlphaEarth Foundations

The AlphaEarth foundation model (8) is comparable to OlmoEarth in that both draw on similar data
sources and were designed to support similar downstream tasks. Rather than releasing a trainable model,
the AlphaEarth model provides free access to global, annualized embeddings. We compare OlmoEarth both
as a frozen feature extractor (where, like AlphaEarth, only embeddings are used) and as an end-to-end
finetune-able model.

Since the AlphaEarth model has not been released, we can’t evaluate AlphaEarth under a finetuning regime.
We assess the performance of the AlphaEarth embeddings compared to the OlmoEarth embeddings from the
ViT Base encoder using a simple KNN classifier. To assess the benefits of more complex decoders, we use the
partner task decoders described in Section 3.5.

When frozen and with a KNN-classifier, OlmoEarth outperforms AlphaEarth on the Nandi and AWF tasks,
while AEF outperforms OlmoEarth on the Ecosystem mapping task. However, the OlmoEarth models benefit
significantly from full-finetuning. AEF performance degrades significantly when adding a trained decoder. It’s
possible AEF would benefit from parameter tuning on this trained decoder but for consistency we use the
same settings as in the fine-tuning experiments.

B Patch Size Analysis for m_cashew_plant

We observe that for the m_cashew_plant evaluation task, larger patch sizes lead to better performance for
models that support variable patch sizes, such as OlmoEarth and Galileo. Table 8 summarizes the linear
probing and fine-tuning results for m_cashew_plant across different patch sizes.

This effect is unusual; typically, a smaller patch size improves performance (e.g. Figure 4 of (34)). We
hypothesize that this effect occurs because of the spatially coarse labels in the dataset, which are polygons
instead of at a pixel level (Figure 5).

Patch 4x4  Patch 8xX8 Patch 16x16

LPp FT LP FT LP FT
OlmoEarth-Base 27.7 719 279 76.2 323 7938
Galileo 24.3 730 256 76.9 289 78.8

Model

Table 8 Performance (mloU) comparison (LP = Linear Probing, FT = Fine-tuning) across patch sizes.
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Figure5 An example instance from the m_cashew_plant dataset.
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